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Group von Neumann algebras

Throughout, G will denote a countable discrete group.

o Left regular representation: u: G — U({2G)
Where (ug€)(h) = &(gth) for any g, h € G and £ € (2G.
e Induces an injective *-homomorphism C[G] < B(£?G).

The group von Neumann algebra is given by LG = (C[G] B(£?G).

e LG is a tracial von Neumann algebra, with the canonical faithful
normal tracial state 7 extending 7(ug) = de -

Theorem (Murray-von Neumann '43) |

LG is aIl; factor if and only if G is ICC (infinite conjugacy classes).
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Rigidity for group von Neumann algebras

Question: How much does £LG remember from G?
When and what properties of G pass to LG?

@ Locally finite ICC groups G have LG = R (Murray-von Neumann
'43).

e If G is ICC amenable, then £LG = R (Connes '76).

e LI, is prime for n > 2 (Ge '96). Same for any ICC hyperbolic
group (Ozawa '03).

@ Product rigidity £(G; x ... X G,)' = LH, then H = Hy x ... X H,
with LH; = LG; (up to amplifications and an inner automorphism)
for G; € S,r weakly amenable (Chifan-de Santiago-Sinclair '15).

o First examples of W*-superrigid groups (LG = LH implies G = H)
constructed from wreath products (loana-Popa-Vaes '10).
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The hyperfinite II; factor R and the McDuff property

The hyperfinite 1I; factor R
°oR= @N(M2((C)7T) = RIR.

McDuff Property
A factor M is said to be McDuff if M = MQR.

o If LG is McDuff, then LG = LGRLA = L(G x A) (for any A
amenable I1CC).

o We call a group W*-McDuff if LG is McDuff.

Absence of rigidity: W*-McDuff groups can never be W*-superrigid.
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McDuff W*-superrigidity

Question: Can we have instances of non W*-superrigid groups where the
lack of rigidity is completely characterized?

Any rigidity statement on W*-McDuff groups has to allow for a direct sum
with an ICC amenable group.

Definition

We say a group G is McDuff superrigid if for any discrete group H we
have that LG = LH implies H = G x A (for some ICC amenable group A)

i. e. for McDuff superrigid groups, the obvious obstruction to superrigidity
is the only obstruction.
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Infinite product rigidity

Infinite products (direct sums):
@ Take a collection {G,} hen of infinite ICC groups.
@ Then, G = @y G, is W*-McDuff, since LG = @NEG,, and

@ LG, —® (Pn(LGp)pn @ My(C)) = ®N(p,,(ccn)pn)®7z.

@ Any ICC infinite product group is W*-McDuff.

Theorem (Infinite product rigidity, Chifan-Udrea '18) |

Let {Gp}nen be an infinite collection of infinite ICC, weakly amenable,
bi-exact, property (T) groups and G = @y G,. Suppose LG = LH for
some discrete group H. Then H = @y Hy, x A with L(G,) = L(Hn) (up
to an amplification) and A is an amenable ICC group.
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Approach to finding McDuff W*-superrigid groups

If only we could plug in W*-superrigid groups G, (for n € N) into the
Infinite Product Rigidity of (Chifan-Udrea '18),

then for G = @y G, and LG = LH we would get:

H = @y Hn x A with L(G,) = L(H,) and A is some amenable ICC group.

Thus, G, being W*-superrigid would imply G, = H,, and therefore
H=@yG, x A= G x A
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Obstacles to directly using existing results

@ The infinite product rigidity result of Chifan-Udrea '18 requires each
group in the direct sum to be weakly amenable, bi-exact and have
property (T).

@ To deduce McDuff W*-superrigidity we would also need each direct
summand to be W*-superrigid.

Chifan-loana-Osin-Sun "21: First examples of W*-superrigid groups with
property (T), through a novel construction called wreath-like products.

@ But now, it is not known whether the W*-superrigid wreath-like
product groups could be bi-exact (or weakly amenable).
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Wreath-like product: Take groups A, B and an action B ~ [ on a set.
Then G € WR(A, B ~ 1), if there is a s.e.s.

~
—

1 —— AD =, A »y G —— B

where A; = A and such that gA;g~! = Ac(g)i forany i€ 1, g€ G.



Wreath-like product groups as cocycle semidirect products

Wreath-like product: Take groups A, B and an action B ~ [ on a set.

Then G € WR(A, B ~ 1), if there is a s.e.s.

() .— . :
1—— AD =, A GKZ/B 1

where A; 2 A and such that gA;g~! = Acg)iforanyiel, gecG.
Take any set-theoretic section ( : B — G.
Then we have a map o : B — Aut(A()) given by o(b) = Ad(¢(b))

and a 2-cocycle o : B x B — AU) given by a(b, b') = ¢(b)¢(H)¢(bb)~

Thus, G = A() Mg B is a cocycle-twisted semidirect product.

Similarly, £(G) = L(A") %, B is a cocycle crossed product.

Juan Felipe Ariza Mejia McDuff superrigidity for group II; factors January 2026

1

10/18



The main issue for Inf. Prod. Rig. with WR(A, B ~ [)

To compare the group structures in LG and LH we look through the
comultiplication A : LH — LH®RLH which maps the canonical group
unitaries by up — up ® up for each h € H.

We want to be able to locate tails of the infinite product, i. e. we want for
each i € N some j € N such that

AL(ED Gn) < LD GEL(ED Gn)
N{i) M{) N\{j)

We do have that G, is bi-exact relative to AS,I”), and this leads to

AL(ED G) < L(ED G x ANGL(ED G x A
N\{i} N\{j} N\{/j}
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The main issue for Inf. Prod. Rig. with WR(A, B ~ [)
We need to bypass E(AJ(-IJ)) = @,j(Aj) in the intertwining
LI Go) < L(EP o x ANSL(EP G, x AP
N\{i} N\{j} N\{j}

From loana '06 there is a deformation of E(Aj(-lj)) = @,jﬁAj that controls
how far into an infinite tensor product one can intertwine.

More specifically, there is a dilation L’(AJ(.IJ)) cM:= ®, L(Aj+Z) and a
path of automorphisms a; € Aut(M) that “move” each A; towards Z.

By controlling the rate of convergence of a; 20 id we can have a finite
K & I; such that

LD 6) < LD AR, (ANFLED HR, (A

N\{i} N\{} N\{j}
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Arrays for Wreath-like product groups in WR,(A, B ~ 1)

Consider Hg = (2(I) with the action of G = A) x, , B (wreath-like
product group), given by 7 : G — B — O(£3()Rr)

and a map q : G — 2()r which reads which entries of (a;); € A() are
different from the identity, i. e. for g = cb with ¢ € A)_ b € B we let

1 if i € supp(c)

0 otherwise.

q(eb)(i) = {

We guarantee q is an array (a generalization of a 1-cocycle) by assuming
the 2-cocycle a: B x B — A has uniformly bounded support (and then
say G € WRp(A, B ~ 1)).

This means, there is Dy > 0 such that |supp(a(b, b'))| < Dy for all
b, b’ € B where supp(a(b, b)) = {i €l : a(b,b'); # 1}.
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Subordinating two deformations on WR (A, B ~ I)

Using the array g on G we can apply the Gaussian deformation to £(G;)
from (Sinclair '10, Chifan-Sinclair '11).

We also have the tensor length deformation «; on E(AJ(.U)).

We can tie together the rate of convergence of the two deformations on
subalgebras of E(AJ(-IJ')).

Moreover, for {G, € WR(An, Bn ~ I,) : n € N}, the support arrays g,
on G, as before can be tensored together to form an array on @y G, that
still captures information about the tensor length in finitely many of the

AL,
(An array for 7 : G — O(HR) is a map q : G — Hpg such that for all
g € G thereis 0 < K < 00 so suppcc|lq(gh) — mgq(h)| < K.

Tensoring two arrays generally increases the value of K)
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Constructing groups in WRy(A, B ~ 1)

Theorem (AM-Chifan-Osin-Sun '25) |

Let G be a torsion-free hyperbolic group. Suppose that g is a non-trivial
element of G that is not a proper power. Then for any sufficiently large
prime n € N, we have

G/[(&"), (") € WRu(Z, G/{g") ~ 1),

where the action of G/{(g")) on I is transitive with stabilizers isomorphic
to Z/nZ.

In addition, G/{(g")) is a non-elementary, ICC, hyperbolic group.
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Infinite product rigidity for WR (A, B ~ 1)

Theorem (AM-Chifan-Osin-Sun '25)

For n € N let G, € WRp(An, By ~ In) be a property (T) wreath-like
product group where A, is a nontrivial amenable group, B, is an ICC
subgroup of a hyperbolic group and the action B,, ~ I, has amenable
stabilizers. Denote G = @,enG, and assume that H is an arbitrary group
satisfying L(G) = L(H).

Then H admits an infinite direct sum decomposition H = (©,enHp) X A,
with £(Gp) = L(H,) (up to an amplification) for some A ICC amenable
group.
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McDuff superrigid groups

From Chifan-loana-Osin-Sun 21 we know many groups G, that fit into

the previous theorem are actually W*-superrigid (and have trivial
fundamental group).

Theorem (AM-Chifan-Osin-Sun '25)

For every n € N let G, € WRp(An, By ~ 1) be a property (T)
wreath-like product group where A, is a nontrivial abelian group, B, is an

ICC subgroup of a hyperbolic group and the action B, ~ I, has amenable
stabilizers. Denote by G = ®penGp.

Then G is McDuff superrigid.

Corollary (AM-Chifan-Osin-Sun '25)

There exists a continuum of pairwise non-isomorphic McDuff superrigid
groups.
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Thank you!
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