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Group von Neumann algebras

Throughout, G will denote a countable discrete group.

Left regular representation: u : G → U(ℓ2G )
Where (ugξ)(h) = ξ(g−1h) for any g , h ∈ G and ξ ∈ ℓ2G .

Induces an injective ∗-homomorphism C[G ] ↪→ B(ℓ2G ).

The group von Neumann algebra is given by LG = C[G ]
sot ⊂ B(ℓ2G ).

LG is a tracial von Neumann algebra, with the canonical faithful
normal tracial state τ extending τ(ug ) = δe,g .

Theorem (Murray-von Neumann ’43)

LG is a II1 factor if and only if G is ICC (infinite conjugacy classes).
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Rigidity for group von Neumann algebras

Question: How much does LG remember from G?
When and what properties of G pass to LG?

Locally finite ICC groups G have LG ∼= R (Murray-von Neumann
’43).

If G is ICC amenable, then LG ∼= R (Connes ’76).

LFn is prime for n ≥ 2 (Ge ’96). Same for any ICC hyperbolic
group (Ozawa ’03).

Product rigidity L(G1 × ...× Gn)
t = LH, then H = H1 × ...× Hn

with LHi = LGi (up to amplifications and an inner automorphism)
for Gi ∈ Snf weakly amenable (Chifan-de Santiago-Sinclair ’15).

First examples of W ∗-superrigid groups (LG = LH implies G ∼= H)
constructed from wreath products (Ioana-Popa-Vaes ’10).
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The hyperfinite II1 factor R and the McDuff property

The hyperfinite II1 factor R
R ∼=

⊗
N(M2(C), τ) ∼= R⊗R.

McDuff Property

A factor M is said to be McDuff if M ∼= M⊗R.

If LG is McDuff, then LG ∼= LG⊗LA ∼= L(G × A) (for any A
amenable ICC).

We call a group W ∗-McDuff if LG is McDuff.

Absence of rigidity: W ∗-McDuff groups can never be W ∗-superrigid.
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McDuff W ∗-superrigidity

Question: Can we have instances of non W ∗-superrigid groups where the
lack of rigidity is completely characterized?

Any rigidity statement on W ∗-McDuff groups has to allow for a direct sum
with an ICC amenable group.

Definition

We say a group G is McDuff superrigid if for any discrete group H we
have that LG = LH implies H ∼= G ×A (for some ICC amenable group A).

i. e. for McDuff superrigid groups, the obvious obstruction to superrigidity
is the only obstruction.
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Infinite product rigidity

Infinite products (direct sums):

Take a collection {Gn}n∈N of infinite ICC groups.

Then, G =
⊕

N Gn is W ∗-McDuff, since LG ∼=
⊗

NLGn and⊗
N
LGn

∼=
⊗

N
(pn(LGn)pn ⊗M2(C)) ∼=

⊗
N
(pn(LGn)pn)⊗R .

Any ICC infinite product group is W ∗-McDuff.

Theorem (Infinite product rigidity, Chifan-Udrea ’18)

Let {Gn}n∈N be an infinite collection of infinite ICC, weakly amenable,
bi-exact, property (T) groups and G =

⊕
N Gn. Suppose LG = LH for

some discrete group H. Then H =
⊕

NHn × A with L(Gn) ∼= L(Hn) (up
to an amplification) and A is an amenable ICC group.
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Approach to finding McDuff W ∗-superrigid groups

If only we could plug in W ∗-superrigid groups Gn (for n ∈ N) into the
Infinite Product Rigidity of (Chifan-Udrea ’18),

then for G =
⊕

N Gn and LG = LH we would get:

H =
⊕

NHn ×A with L(Gn) ∼= L(Hn) and A is some amenable ICC group.

Thus, Gn being W ∗-superrigid would imply Gn
∼= Hn and therefore

H ∼=
⊕

N Gn × A = G × A.
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Obstacles to directly using existing results

The infinite product rigidity result of Chifan-Udrea ’18 requires each
group in the direct sum to be weakly amenable, bi-exact and have
property (T).

To deduce McDuff W ∗-superrigidity we would also need each direct
summand to be W ∗-superrigid.

Chifan-Ioana-Osin-Sun ’21: First examples of W ∗-superrigid groups with
property (T), through a novel construction called wreath-like products.

But now, it is not known whether the W ∗-superrigid wreath-like
product groups could be bi-exact (or weakly amenable).

Juan Felipe Ariza Mej́ıa McDuff superrigidity for group II1 factors January 2026 8 / 18



Wreath-like product groups

Wreath-like product: Take groups A,B and an action B ↷ I on a set.

Then G ∈ WR(A,B ↷ I ), if there is a s.e.s.

1 A(I ) :=
⊕

I Ai G B 1ε

ζ

where Ai
∼= A and such that gAig

−1 = Aε(g)·i for any i ∈ I , g ∈ G .
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Wreath-like product groups as cocycle semidirect products

Wreath-like product: Take groups A,B and an action B ↷ I on a set.

Then G ∈ WR(A,B ↷ I ), if there is a s.e.s.

1 A(I ) :=
⊕

I Ai G B 1ε

ζ

where Ai
∼= A and such that gAig

−1 = Aε(g)·i for any i ∈ I , g ∈ G .

Take any set-theoretic section ζ : B → G .

Then we have a map σ : B → Aut(A(I )) given by σ(b) = Ad(ζ(b))

and a 2-cocycle α : B × B → A(I ) given by α(b, b′) = ζ(b)ζ(b′)ζ(bb′)−1.

Thus, G ∼= A(I ) ⋊σ,α B is a cocycle-twisted semidirect product.

Similarly, L(G ) = L(A(I ))⋊σ,α B is a cocycle crossed product.
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The main issue for Inf. Prod. Rig. with WR(A,B ↷ I )

To compare the group structures in LG and LH we look through the
comultiplication ∆ : LH → LH⊗̄LH which maps the canonical group
unitaries by uh 7→ uh ⊗ uh for each h ∈ H.

We want to be able to locate tails of the infinite product, i. e. we want for
each i ∈ N some j ∈ N such that

∆(L(
⊕
N\{i}

Gn)) ≺ L(
⊕
N\{j}

Gn)⊗̄L(
⊕
N\{j}

Gn)

We do have that Gn is bi-exact relative to A
(In)
n , and this leads to

∆(L(
⊕
N\{i}

Gn)) ≺ L(
⊕
N\{j}

Gn × A
(Ij )
j )⊗̄L(

⊕
N\{j}

Gn × A
(Ij )
j )
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The main issue for Inf. Prod. Rig. with WR(A,B ↷ I )

We need to bypass L(A(Ij )
j ) =

⊗
Ij
(Aj) in the intertwining

∆(L(
⊕
N\{i}

Gn)) ≺ L(
⊕
N\{j}

Gn × A
(Ij )
j )⊗̄L(

⊕
N\{j}

Gn × A
(Ij )
j )

From Ioana ’06 there is a deformation of L(A(Ij )
j ) =

⊗
Ij
LAj that controls

how far into an infinite tensor product one can intertwine.

More specifically, there is a dilation L(A(Ij )
j ) ⊂ M̃ :=

⊗
Ij
L(Aj ∗ Z) and a

path of automorphisms αt ∈ Aut(M̃) that “move” each Aj towards Z.

By controlling the rate of convergence of αt
t→0−−→ id we can have a finite

K ⋐ Ij such that

∆(L(
⊕
N\{i}

Gn)) ≺ L(
⊕
N\{j}

Gn)⊗̄(
⊗

K
(Aj))⊗̄L(

⊕
N\{j}

Gn)⊗̄(
⊗

K
(Aj))

Juan Felipe Ariza Mej́ıa McDuff superrigidity for group II1 factors January 2026 12 / 18



Arrays for Wreath-like product groups in WRb(A,B ↷ I )

Consider HR = ℓ2R(I ) with the action of G = A(I ) ⋊σ,α B (wreath-like
product group), given by π : G → B → O(ℓ2(I )R)

and a map q : G → ℓ2(I )R which reads which entries of (ai )i ∈ A(I ) are
different from the identity, i. e. for g = cb with c ∈ A(I ), b ∈ B we let

q(cb)(i) =

{
1 if i ∈ supp(c)

0 otherwise.

We guarantee q is an array (a generalization of a 1-cocycle) by assuming
the 2-cocycle α : B × B → A(I ) has uniformly bounded support (and then
say G ∈ WRb(A,B ↷ I )).

This means, there is D0 > 0 such that | supp(α(b, b′))| < D0 for all
b, b′ ∈ B where supp(α(b, b′)) = {i ∈ I : α(b, b′)i ̸= 1}.
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Subordinating two deformations on WRb(A,B ↷ I )

Using the array q on G we can apply the Gaussian deformation to L(Gj)
from (Sinclair ’10, Chifan-Sinclair ’11).

We also have the tensor length deformation αt on L(A(Ij )
j ).

We can tie together the rate of convergence of the two deformations on

subalgebras of L(A(Ij )
j ).

Moreover, for {Gn ∈ WRb(An,Bn ↷ In) : n ∈ N}, the support arrays qn
on Gn as before can be tensored together to form an array on

⊕
N Gn that

still captures information about the tensor length in finitely many of the

A
(In)
n .

(An array for π : G → O(HR) is a map q : G → HR such that for all
g ∈ G there is 0 < K < ∞ so suph∈G∥q(gh)− πgq(h)∥ < K .
Tensoring two arrays generally increases the value of K )
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Constructing groups in WRb(A,B ↷ I )

Theorem (AM-Chifan-Osin-Sun ’25)

Let G be a torsion-free hyperbolic group. Suppose that g is a non-trivial
element of G that is not a proper power. Then for any sufficiently large
prime n ∈ N, we have

G/[⟨⟨gn⟩⟩, ⟨⟨gn⟩⟩] ∈ WRb(Z,G/⟨⟨gn⟩⟩ ↷ I ),

where the action of G/⟨⟨gn⟩⟩ on I is transitive with stabilizers isomorphic
to Z/nZ.
In addition, G/⟨⟨gn⟩⟩ is a non-elementary, ICC, hyperbolic group.
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Infinite product rigidity for WRb(A,B ↷ I )

Theorem (AM-Chifan-Osin-Sun ’25)

For n ∈ N let Gn ∈ WRb(An,Bn ↷ In) be a property (T) wreath-like
product group where An is a nontrivial amenable group, Bn is an ICC
subgroup of a hyperbolic group and the action Bn ↷ In has amenable
stabilizers. Denote G = ⊕n∈NGn and assume that H is an arbitrary group
satisfying L(G ) = L(H).
Then H admits an infinite direct sum decomposition H = (⊕n∈NHn)× A,
with L(Gn) ∼= L(Hn) (up to an amplification) for some A ICC amenable
group.

Juan Felipe Ariza Mej́ıa McDuff superrigidity for group II1 factors January 2026 16 / 18



McDuff superrigid groups

From Chifan-Ioana-Osin-Sun ’21 we know many groups Gn that fit into
the previous theorem are actually W ∗-superrigid (and have trivial
fundamental group).

Theorem (AM-Chifan-Osin-Sun ’25)

For every n ∈ N let Gn ∈ WRb(An,Bn ↷ In) be a property (T)
wreath-like product group where An is a nontrivial abelian group, Bn is an
ICC subgroup of a hyperbolic group and the action Bn ↷ In has amenable
stabilizers. Denote by G = ⊕n∈NGn.

Then G is McDuff superrigid.

Corollary (AM-Chifan-Osin-Sun ’25)

There exists a continuum of pairwise non-isomorphic McDuff superrigid
groups.
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Thank you!
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