

McDuff superrigidity for group II_1 factors

Juan Felipe Ariza Mejía

The University of Iowa

Partially supported by UI Erwin and Peggy Kleinfeld Scholar Fellowship

(joint work with Ionuț Chifan, Denis Osin and Bin Sun)

JMM 2026

Group von Neumann algebras

Throughout, G will denote a countable discrete group.

- Left regular representation: $u : G \rightarrow \mathcal{U}(\ell^2 G)$
Where $(u_g \xi)(h) = \xi(g^{-1}h)$ for any $g, h \in G$ and $\xi \in \ell^2 G$.
- Induces an injective $*$ -homomorphism $\mathbb{C}[G] \hookrightarrow \mathcal{B}(\ell^2 G)$.

The **group von Neumann algebra** is given by $\mathcal{L}G = \overline{\mathbb{C}[G]}^{sot} \subset \mathcal{B}(\ell^2 G)$.

- $\mathcal{L}G$ is a tracial von Neumann algebra, with the canonical faithful normal tracial state τ extending $\tau(u_g) = \delta_{e,g}$.

Theorem (Murray-von Neumann '43)

$\mathcal{L}G$ is a **II₁ factor** if and only if G is **ICC** (infinite conjugacy classes).

Rigidity for group von Neumann algebras

Question: How much does $\mathcal{L}G$ remember from G ?

When and what properties of G pass to $\mathcal{L}G$?

- **Locally finite ICC groups** G have $\mathcal{L}G \cong \mathcal{R}$ (Murray-von Neumann '43).
- If G is **ICC amenable**, then $\mathcal{L}G \cong \mathcal{R}$ (Connes '76).
- \mathcal{LF}_n is **prime** for $n \geq 2$ (Ge '96). Same for any **ICC hyperbolic** group (Ozawa '03).
- **Product rigidity** $\mathcal{L}(G_1 \times \dots \times G_n)^t = \mathcal{L}H$, then $H = H_1 \times \dots \times H_n$ with $\mathcal{L}H_i = \mathcal{L}G_i$ (up to amplifications and an inner automorphism) for $G_i \in \mathcal{S}_{nf}$ weakly amenable (Chifan-de Santiago-Sinclair '15).
- First examples of **W^* -superrigid groups** ($\mathcal{L}G = \mathcal{L}H$ implies $G \cong H$) constructed from wreath products (Ioana-Popa-Vaes '10).

The hyperfinite II_1 factor \mathcal{R} and the McDuff property

The hyperfinite II_1 factor \mathcal{R}

- $\mathcal{R} \cong \overline{\bigotimes}_{\mathbb{N}}(M_2(\mathbb{C}), \tau) \cong \mathcal{R} \overline{\otimes} \mathcal{R}$.

McDuff Property

A factor \mathcal{M} is said to be **McDuff** if $\mathcal{M} \cong \mathcal{M} \overline{\otimes} \mathcal{R}$.

- If $\mathcal{L}G$ is McDuff, then $\mathcal{L}G \cong \mathcal{L}G \overline{\otimes} \mathcal{L}A \cong \mathcal{L}(G \times A)$ (for any A amenable ICC).
- We call a group **W^* -McDuff** if $\mathcal{L}G$ is McDuff.

Absence of rigidity: W^* -McDuff groups can never be W^* -superrigid.

McDuff W^* -superrigidity

Question: Can we have instances of non W^* -superrigid groups where the lack of rigidity is completely characterized?

Any rigidity statement on W^* -McDuff groups has to allow for a direct sum with an ICC amenable group.

Definition

We say a group G is **McDuff superrigid** if for any discrete group H we have that $\mathcal{L}G = \mathcal{L}H$ implies $H \cong G \times A$ (for some ICC amenable group A).

i. e. for McDuff superrigid groups, the obvious obstruction to superrigidity is the only obstruction.

Infinite product rigidity

Infinite products (direct sums):

- Take a collection $\{G_n\}_{n \in \mathbb{N}}$ of infinite ICC groups.
- Then, $G = \bigoplus_{\mathbb{N}} G_n$ is W^* -McDuff, since $\mathcal{L}G \cong \overline{\bigotimes}_{\mathbb{N}} \mathcal{L}G_n$ and
$$\overline{\bigotimes}_{\mathbb{N}} \mathcal{L}G_n \cong \overline{\bigotimes}_{\mathbb{N}} (p_n(\mathcal{L}G_n)p_n \otimes M_2(\mathbb{C})) \cong \overline{\bigotimes}_{\mathbb{N}} (p_n(\mathcal{L}G_n)p_n) \overline{\otimes} \mathcal{R}.$$
- Any ICC infinite product group is W^* -McDuff.

Theorem (Infinite product rigidity, Chifan-Udrea '18)

Let $\{G_n\}_{n \in \mathbb{N}}$ be an infinite collection of infinite ICC, weakly amenable, bi-exact, property (T) groups and $G = \bigoplus_{\mathbb{N}} G_n$. Suppose $\mathcal{L}G = \mathcal{L}H$ for some discrete group H . Then $H = \bigoplus_{\mathbb{N}} H_n \times A$ with $\mathcal{L}(G_n) \cong \mathcal{L}(H_n)$ (up to an amplification) and A is an amenable ICC group.

Approach to finding McDuff W^* -superrigid groups

If only we could plug in **W^* -superrigid** groups G_n (for $n \in \mathbb{N}$) into the **Infinite Product Rigidity** of (Chifan-Udrea '18),

then for $G = \bigoplus_{\mathbb{N}} G_n$ and $\mathcal{L}G = \mathcal{L}H$ we would get:

$H = \bigoplus_{\mathbb{N}} H_n \times A$ with $\mathcal{L}(G_n) \cong \mathcal{L}(H_n)$ and A is some amenable ICC group.

Thus, G_n being W^* -superrigid would imply $G_n \cong H_n$ and therefore

$H \cong \bigoplus_{\mathbb{N}} G_n \times A = G \times A$.

Obstacles to directly using existing results

- The infinite product rigidity result of Chifan-Udrea '18 requires each group in the direct sum to be weakly amenable, bi-exact and have property (T).
- To deduce McDuff W^* -superrigidity we would also need each direct summand to be W^* -superrigid.

Chifan-Ioana-Osin-Sun '21: First examples of W^* -superrigid groups with property (T), through a novel construction called wreath-like products.

- But now, it is not known whether the W^* -superrigid wreath-like product groups could be bi-exact (or weakly amenable).

Wreath-like product groups

Wreath-like product: Take groups A, B and an action $B \curvearrowright I$ on a set.

Then $G \in \mathcal{WR}(A, B \curvearrowright I)$, if there is a s.e.s.

$$1 \longrightarrow A^{(I)} := \bigoplus_I A_i \longrightarrow G \xrightarrow{\varepsilon} B \longrightarrow 1$$

where $A_i \cong A$ and such that $gA_ig^{-1} = A_{\varepsilon(g)\cdot i}$ for any $i \in I$, $g \in G$.

Wreath-like product groups as cocycle semidirect products

Wreath-like product: Take groups A, B and an action $B \curvearrowright I$ on a set.

Then $G \in \mathcal{WR}(A, B \curvearrowright I)$, if there is a s.e.s.

$$1 \longrightarrow A^{(I)} := \bigoplus_I A_i \longrightarrow G \xrightarrow{\varepsilon} B \longrightarrow 1$$

$\curvearrowleft \zeta$

where $A_i \cong A$ and such that $gA_ig^{-1} = A_{\varepsilon(g) \cdot i}$ for any $i \in I$, $g \in G$.

Take any set-theoretic section $\zeta : B \rightarrow G$.

Then we have a map $\sigma : B \rightarrow \text{Aut}(A^{(I)})$ given by $\sigma(b) = \text{Ad}(\zeta(b))$

and a 2-cocycle $\alpha : B \times B \rightarrow A^{(I)}$ given by $\alpha(b, b') = \zeta(b)\zeta(b')\zeta(bb')^{-1}$.

Thus, $G \cong A^{(I)} \rtimes_{\sigma, \alpha} B$ is a cocycle-twisted semidirect product.

Similarly, $\mathcal{L}(G) = \mathcal{L}(A^{(I)}) \rtimes_{\sigma, \alpha} B$ is a cocycle crossed product.

The main issue for Inf. Prod. Rig. with $\mathcal{WR}(A, B \curvearrowright I)$

To compare the group structures in $\mathcal{L}G$ and $\mathcal{L}H$ we look through the comultiplication $\Delta : \mathcal{L}H \rightarrow \mathcal{L}H \bar{\otimes} \mathcal{L}H$ which maps the canonical group unitaries by $u_h \mapsto u_h \otimes u_h$ for each $h \in H$.

We want to be able to locate tails of the infinite product, i. e. we want for each $i \in \mathbb{N}$ some $j \in \mathbb{N}$ such that

$$\Delta(\mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{i\}} G_n)) \prec \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n) \bar{\otimes} \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n)$$

We do have that G_n is bi-exact relative to $A_n^{(I_n)}$, and this leads to

$$\Delta(\mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{i\}} G_n)) \prec \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n \times A_j^{(I_j)}) \bar{\otimes} \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n \times A_j^{(I_j)})$$

The main issue for Inf. Prod. Rig. with $\mathcal{WR}(A, B \curvearrowright I)$

We need to bypass $\mathcal{L}(A_j^{(I_j)}) = \overline{\bigotimes}_{I_j}(A_j)$ in the intertwining

$$\Delta(\mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{i\}} G_n)) \prec \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n \times A_j^{(I_j)}) \bar{\otimes} \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n \times A_j^{(I_j)})$$

From Ioana '06 there is a deformation of $\mathcal{L}(A_j^{(I_j)}) = \overline{\bigotimes}_{I_j} \mathcal{L}A_j$ that controls how far into an infinite tensor product one can intertwine.

More specifically, there is a dilation $\mathcal{L}(A_j^{(I_j)}) \subset \tilde{M} := \overline{\bigotimes}_{I_j} \mathcal{L}(A_j * \mathbb{Z})$ and a path of automorphisms $\alpha_t \in \text{Aut}(\tilde{M})$ that “move” each A_j towards \mathbb{Z} .

By controlling the rate of convergence of $\alpha_t \xrightarrow{t \rightarrow 0} id$ we can have a finite $K \in I_j$ such that

$$\Delta(\mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{i\}} G_n)) \prec \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n) \bar{\otimes} (\overline{\bigotimes}_K (A_j)) \bar{\otimes} \mathcal{L}(\bigoplus_{\mathbb{N} \setminus \{j\}} G_n) \bar{\otimes} (\overline{\bigotimes}_K (A_j))$$

Arrays for Wreath-like product groups in $\mathcal{WR}_b(A, B \curvearrowright I)$

Consider $\mathcal{H}_{\mathbb{R}} = \ell_{\mathbb{R}}^2(I)$ with the action of $G = A^{(I)} \rtimes_{\sigma, \alpha} B$ (wreath-like product group), given by $\pi : G \rightarrow B \rightarrow \mathcal{O}(\ell^2(I)_{\mathbb{R}})$

and a map $q : G \rightarrow \ell^2(I)_{\mathbb{R}}$ which reads which entries of $(a_i)_i \in A^{(I)}$ are different from the identity, i. e. for $g = cb$ with $c \in A^{(I)}, b \in B$ we let

$$q(cb)(i) = \begin{cases} 1 & \text{if } i \in \text{supp}(c) \\ 0 & \text{otherwise.} \end{cases}$$

We guarantee q is an **array** (a generalization of a 1-cocycle) by assuming the 2-cocycle $\alpha : B \times B \rightarrow A^{(I)}$ has uniformly bounded support (and then say $G \in \mathcal{WR}_b(A, B \curvearrowright I)$).

This means, there is $D_0 > 0$ such that $|\text{supp}(\alpha(b, b'))| < D_0$ for all $b, b' \in B$ where $\text{supp}(\alpha(b, b')) = \{i \in I : \alpha(b, b')_i \neq 1\}$.

Subordinating two deformations on $\mathcal{WR}_b(A, B \curvearrowright I)$

Using the array q on G we can apply the Gaussian deformation to $\mathcal{L}(G_j)$ from (Sinclair '10, Chifan-Sinclair '11).

We also have the tensor length deformation α_t on $\mathcal{L}(A_j^{(I_j)})$.

We can tie together the rate of convergence of the two deformations on subalgebras of $\mathcal{L}(A_j^{(I_j)})$.

Moreover, for $\{G_n \in \mathcal{WR}_b(A_n, B_n \curvearrowright I_n) : n \in \mathbb{N}\}$, the support arrays q_n on G_n as before can be tensored together to form an array on $\bigoplus_{\mathbb{N}} G_n$ that still captures information about the tensor length in finitely many of the $A_n^{(I_n)}$.

(An **array** for $\pi : G \rightarrow \mathcal{O}(\mathcal{H}_{\mathbb{R}})$ is a map $q : G \rightarrow \mathcal{H}_{\mathbb{R}}$ such that for all $g \in G$ there is $0 < K < \infty$ so $\sup_{h \in G} \|q(gh) - \pi_g q(h)\| < K$.

Tensoring two arrays generally increases the value of K)

Constructing groups in $\mathcal{WR}_b(A, B \curvearrowright I)$

Theorem (AM-Chifan-Osin-Sun '25)

Let G be a torsion-free hyperbolic group. Suppose that g is a non-trivial element of G that is not a proper power. Then for any sufficiently large prime $n \in \mathbb{N}$, we have

$$G / [\langle\langle g^n \rangle\rangle, \langle\langle g^n \rangle\rangle] \in \mathcal{WR}_b(\mathbb{Z}, G / \langle\langle g^n \rangle\rangle \curvearrowright I),$$

where the action of $G / \langle\langle g^n \rangle\rangle$ on I is transitive with stabilizers isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

In addition, $G / \langle\langle g^n \rangle\rangle$ is a non-elementary, ICC, hyperbolic group.

Infinite product rigidity for $\mathcal{WR}_b(A, B \curvearrowright I)$

Theorem (AM-Chifan-Osin-Sun '25)

For $n \in \mathbb{N}$ let $G_n \in \mathcal{WR}_b(A_n, B_n \curvearrowright I_n)$ be a property (T) wreath-like product group where A_n is a nontrivial amenable group, B_n is an ICC subgroup of a hyperbolic group and the action $B_n \curvearrowright I_n$ has amenable stabilizers. Denote $G = \bigoplus_{n \in \mathbb{N}} G_n$ and assume that H is an arbitrary group satisfying $\mathcal{L}(G) = \mathcal{L}(H)$.

Then H admits an infinite direct sum decomposition $H = (\bigoplus_{n \in \mathbb{N}} H_n) \times A$, with $\mathcal{L}(G_n) \cong \mathcal{L}(H_n)$ (up to an amplification) for some A ICC amenable group.

McDuff superrigid groups

From Chifan-Ioana-Osin-Sun '21 we know many groups G_n that fit into the previous theorem are actually W^* -superrigid (and have trivial fundamental group).

Theorem (AM-Chifan-Osin-Sun '25)

For every $n \in \mathbb{N}$ let $G_n \in \mathcal{WR}_b(A_n, B_n \curvearrowright I_n)$ be a property (T) wreath-like product group where A_n is a nontrivial abelian group, B_n is an ICC subgroup of a hyperbolic group and the action $B_n \curvearrowright I_n$ has amenable stabilizers. Denote by $G = \bigoplus_{n \in \mathbb{N}} G_n$.

Then G is McDuff superrigid.

Corollary (AM-Chifan-Osin-Sun '25)

There exists a continuum of pairwise non-isomorphic McDuff superrigid groups.

Thank you!